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Abstract 

This study on post-fire vegetation regrowth in the Cold Fire burn scar in California utilized free 

and open-source software (FOSS) and data, including various Python packages, Jupyter 

notebook, QGIS, and earth observation data. The use of these tools provided several advantages, 

including cost-effectiveness and the ability to customize and modify the analysis. By utilizing 

pre- and post-fire Normalized Difference Vegetation Index (NDVI) data and employing linear 

regression analysis, this study assessed the impact of slope, aspect, and burn severity on post-fire 

vegetation regrowth in the Cold Fire burn scar in California. The findings showed that the burned 

area demonstrated a moderate recovery to pre-fire conditions, with regrowth rates being most 

significant in the second and third years following the fire. Furthermore, the study revealed that 

regrowth was higher on steeper and south-facing slopes, as well as areas with lower burn 

severity. It also proved that FOSS for GIS is effective for accessing post-fire vegetation 

regrowth. The code for this study can be found on GitHub.  

1. Introduction 

Post-fire vegetation regrowth analyses are crucial for land management because they offer 

valuable insights into the ecosystem's recovery following a wildfire (Mitri & Gitas, 2013). These 

analyses enable land managers to identify areas that are more or less resilient to fire and 

anticipate potential risks, such as increased erosion, invasive species, or vegetation type 

conversion (Arianoutsou et al., 2011; Guiterman et al., 2022; Wittenberg, 2021). By utilizing this 

information, land managers can make informed decisions about managing the land after a fire, 

including whether to actively promote recovery or allow natural regeneration to occur. 

Additionally, these analyses can aid in prioritizing management efforts and targeting resources to 

https://github.com/cmbappleby/grad_gis_projects/blob/f5b05e73a4c6232cf190c0f2f5b9e49fbc640a67/post_fire_veg_regrowth_analysis_Landsat.ipynb
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areas that require restoration, thereby preventing further damage to the ecosystem and ensuring 

sustainable and resilient land management practices (After Fire: Toolkit for the Southwest, n.d.). 

Hypotheses 

The vegetation regrowth hypotheses were as follows:  

1. Areas with higher burn severity will have slower regrowth than areas with lower burn 

severity based on the study area for this analysis being approximately 40 kilometers from 

the Crotteau et al. (2013) study area. 

2. North-facing slopes will have higher regrowth than south-facing slopes. 

3. Steeper slopes will have lower regrowth than milder slopes. 

4. Regrowth rates will be higher in the first few years following the fire (Meng et al., 2015; 

Bright et al., 2019). 

Study Area 

On June 21, 2008, the Cold Fire was ignited by a lightning strike and burned an estimated 5,600 

acres of land (Figure 1). The majority of the study area was characterized by verdant vegetation, 

mainly comprising evergreen forests. Prior to 2008, the fire perimeter had experienced three 

fires, with two of them occurring over 30 years ago, and one of them happening less than 20 

years prior and affecting an area of less than 20 acres. In 2020, the Dixie Fire only impacted the 

northern edge of the Cold Fire burn scar. 

The study area has an elevation ranging from roughly 4,100 to 7,000 feet above sea level. Based 

on the Environmental Protection Agency's ecoregion research (2022), the region is 

predominantly covered by a combination of coniferous trees, such as white fir, Douglas-fir, and 

Jeffery pine, among others. The soil moisture regime is classified as mostly xeric, which 
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indicates that the area experiences cool and moist winters and warm and dry summers 

(Ecoregions | US EPA, 2022). Typically, summer temperatures do not exceed 90˚F, while winter 

temperatures can drop down to around 26˚F. The average annual precipitation is approximately 

45 inches, with most of the rainfall occurring between December and March (NOAA's National 

Weather Service, n.d.). 

 

 

Figure 1 - Map of the Cold Fire and intersecting fire perimeters. 
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Free and Open-Source Software 

Proprietary GIS software is generally easier to use than FOSS (Maurya et al., 2015), but the 

licenses can cost a premium. FOSS for GIS allows those who cannot afford proprietary software 

to incorporate GIS into their work or studies (Flenniken et al., 2020), and it fosters innovation 

because new software products can be built upon the work of others (Coetzee et al., 2020). 

Additional advantages of FOSS for GIS include community support, scalability without 

increased costs, open data formats that are easy to port, and the ability to experiment with new 

software without a trial time limit or paying the full licensing fee (Maurya et al., 2015). A 

disadvantage of FOSS for GIS is that it requires more effort to use. There are numerous open-

source projects available, and not only are some not maintained, but it takes time to find the best 

one for your application. Additionally, many open-source projects lack a graphical user interface 

(GUI), and those that do have a GUI are not always intuitive (Maurya et al., 2015).  

Although FOSS for GIS has been around since the 1980s, it wasn’t until 2006 that the not-for-

profit Open Source Geospatial Foundation (OSGeo) was created (Coetzee et al., 2020) with a 

mission “to support the collaborative development of open source geospatial software, and 

promote its widespread use” (OSGeo Description - OSGeo, n.d.). Popular OSGeo projects are 

the Geospatial Data Abstractions Library (GDAL), PostGIS spatial database, and Quantum GIS 

(QGIS) desktop software, among others. Popular non-OSGeo products include various geospatial 

libraries in the R data science language and the Python programming language, and 

OpenDroneMap for processing and analyzing drone imagery. 

A substantial portion of studies do not include information on the software used, whether 

proprietary or FOSS (Muenchow et al., 2019). Of the seven post-fire vegetation regrowth and 
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recovery papers reviewed for this study (Bright et al., 2019; Casady et al., 2010; Meng et al., 

2015; Petropoulos et al., 2014; Strand et al., 2019; Tonbul et al., 2016; Viana-Soto et al., 2017), 

only one mentioned the software used for their analysis. Of the four papers reviewed related to 

using FOSS for GIS (Duarte et al., 2019; Knevels et al., 2019; Mangiameli et al., 2021; Mattivi 

et al., 2019), only one identified exactly where to find their code. Sharing the resources used for 

research, such as software used, code, and data, can assist others in reproducing, replicating, or 

even building upon that research. 

The goal of this study was not only to analyze post-fire vegetation regrowth, but to also use only 

FOSS for GIS, specifically geospatial Python libraries, and to share all the code used in the 

study. An effort was also made to add comments to the code and Jupyter Notebook for better 

understanding. 

2. Data and Methodology 

Factors Affecting Post-Fire Vegetation Regrowth 

There are numerous factors that affect post-fire vegetation regrowth, and not all are covered or 

used in this study. A very important factor is climate, and various metrics affect post-fire 

regrowth differently. As to be expected, drought (Savage et al., 2013) and drought severity 

(Harvey et al., 2016) have a negative effect, and longer growing seasons (Urza & Sibold, 2017) 

and increased precipitation (Welch et al., 2016) have a positive effect. However, climate metrics 

were not included in this analysis. 

Burn Severity 
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Burn severity pertains to the magnitude of organic matter loss, both above and below the ground, 

due to a fire. Burn severity and fire severity are frequently used interchangeably. After a fire has 

occurred, burn severity is frequently used in Burned Area Emergency Response (BAER) 

assessments to measure the degree of change brought about by the fire (Keeley, 2009). 

 

Figure 2 - Workflow used for post-fire vegetation regrowth analysis. 
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According to Crotteau et al. (2013), areas with high severity burns typically have fewer seedling 

densities and a greater distance from seed sources, leading to reduced tree regeneration compared 

to low or moderate severity burned regions. Nonetheless, Johnstone and Chapin (2006) 

discovered that high severity burns may provide seeds with better access to mineral soils as they 

burn through the upper organic layer. Additionally, certain pine tree species have serotinous 

cones that only release seeds when heated by a wildfire (Johnson & Gutsell, 1993). 

The differenced Normalized Burn Ratio (dNBR) is a commonly used spectral index to assess 

burn severity, which is calculated using the near infrared (NIR) and shortwave infrared (SWIR) 

spectral bands. The NIR band is a reliable indicator of plant health as healthy vegetation with 

more chlorophyll reflects more NIR energy, as opposed to vegetation that is unhealthy (Reflected 

Near-Infrared Waves | Science Mission Directorate, n.d.). Conversely, the SWIR band is more 

effective at detecting soil and vegetation with lower water content (Holzman et al., 2021). After a 

fire, NIR reflectance usually decreases while SWIR reflectance increases, which makes the 

dNBR index a valuable tool for evaluating changes in soil and vegetation following a fire (Van 

Gerrevink & Veraverbeke, 2021). 

Topography 

Post-fire vegetation regrowth can also be influenced by aspect and slope, which can be obtained 

from a digital elevation model (DEM). North-facing slopes generally have better moisture 

conditions for supporting vegetation regrowth due to receiving less solar radiation and having 

lower evapotranspiration rates, while south-facing slopes experience more solar radiation and 

have higher evapotranspiration rates (Fox et al., 2008). Steeper slopes can also have a negative 

impact on post-fire vegetation regrowth (Viana-Soto et al., 2017). 
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Quantifying Vegetation Regrowth 

NDVI, which is commonly used to assess vegetation, is calculated using the NIR and red (R) 

spectral bands (Huang et al., 2021). As mentioned earlier, higher NIR values indicate healthier 

vegetation, while unhealthy vegetation reflects more red light, making the difference between 

NIR and R spectral bands a reliable indicator of vegetation health (LP DAAC - Vegetation, n.d.). 

Several studies have used NDVI to monitor post-fire vegetation (Petropoulos et al., 2014), and 

this study also employs it as a measure of vegetation regrowth. 

Data Sources and Preprocessing 

All data were processed, analyzed, and visualized using open-source Python packages in a 

Jupyter Notebook (v6.5.3) except for land cover and fire boundaries. The Jupyter Notebook is 

available on GitHub. A new environment was created for the study using Python version 3.11.2. 

Installing the necessary Python packages required trial and error regarding the installation order 

to install all packages with their required dependencies and versions. Ultimately, installing 

GDAL first allowed all packages to be installed correctly.  

The land cover data and fire perimeters were processed and visualized using QGIS 3.28.5. All 

data were reprojected to NAD 83 UTM Zone 10N for processing and analysis. They study area 

map was made using QGIS. The data processing and analysis workflow can be seen in Figure 2. 

Additionally, QGIS was used to verify pixel alignment and clipping of the rasters produced using 

the Jupyter Notebook.  

A list of all the Python packages used and their versions is in Appendix A. The primary Python 

packages used for raster processing and geospatial analyses were NumPy, rasterio, rioxarray, 

and xarray. NumPy creates and performs operations on multidimensional arrays. It was mainly 

https://github.com/cmbappleby/grad_gis_projects/blob/f5b05e73a4c6232cf190c0f2f5b9e49fbc640a67/post_fire_veg_regrowth_analysis_Landsat.ipynb
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used in part of clipping multiband rasters using a single band raster and getting the raster data 

ready for statistical analysis. 

Before rasterio, GDAL was the only option for raster processing with Python (Gillies, 2023). 

When opening a raster with rasterio.open(), a DatasetReader or DatasetWriter 

object is created.  The object can then be read as a 2-dimensional numpy.array using 

read(1), where ‘1’ is the band number. This method was used to iteratively open, read, and 

process a multiband raster. The object can also be used to write a raster using write() or 

write_band(). When writing a raster, a raster is opened in write mode with the metadata as an 

argument to the function, and the DatasetReader or DatasetWriter object is read and 

written to the opened raster. This method was used to iteratively write processed raster bands to a 

new multiband raster. 

When working with single band raster, rioaxxary was a more efficient way to open rasters 

because it opens and reads rasters in one step as an xarray.DataArray object using 

rioxarray.open_rasterio(). As is evident by the name, open_rasterio() was 

adopted from rasterio (Rioxarray README — Rioxarray 0.14.0 Documentation, n.d.). The 

xarray.DataArray object is similar to a numpy.array with the key difference of also 

storing information about the array, such as spatial data of raster (Overview: Why Xarray?, n.d.). 

Since the object is like a numpy.array, rasters opened using rioxarray can be processed using 

rasterio. Additionally, basic math calculations can be performed on xarray.DataArray 

objects without transformation. The xarray.DataArray objects can also be converted, and 

therefore saved, as a raster using rio.to_raster(). Using rioxarray to save rasters is much 

simpler than using rasterio because the metadata is already part of the xarray.DataArray, 
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and the raster is simply saved instead of needing to open a raster to write to it. This method was 

also used to save a multiband raster. 

Throughout the analysis, different methods were used to perform the same or similar operations, 

such as using both rasterio and rioxarray to save multiband rasters. This was done for two 

reasons. The first reason was to implement the different methods available with the intention of 

learning which method best. The second reason is that even though a method worked to perform 

a particular operation, it didn’t always work when performing an almost identical operation. 

Land Cover 

The National Land Cover Database (NLCD) is a comprehensive database that covers the entire 

United States and Puerto Rico, which is updated every five years at a minimum (National Land 

Cover Database | U.S. Geological Survey, 2020). Land cover data with a 30-meter resolution 

were obtained from the Multi-Resolution Land Characteristics Consortium website for the years 

2001, 2006, 2011, 2016, and 2019 (Data | Multi-Resolution Land Characteristics (MRLC) 

Consortium, n.d.). The land cover data from 2001 were used to identify an appropriate study 

area, while the data from the subsequent years were reprojected and clipped to the study area 

without co-registration, as they were only used for visual identification of the predominant land 

cover types within the study area. 

Fire Perimeters 

The study area was chosen by selecting fire perimeters data from the CAL FIRE Fire and 

Resource Assessment Program, which included fires that occurred in Northern California from 

2003 to 2008 with a burned area of 5,000 acres or more (California Department of Forestry and 

Fire Protection [CAL FIRE], n.d.). The land cover inside the fire perimeters was visually 
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analyzed using the 2001 NLCD to identify locations with mostly evergreen forest in 

mountainous areas. The Cold Fire was identified as a suitable study area and the fire perimeter 

was exported as a shapefile. A shapefile of the study area with a 300-meter buffer was also 

created. 

Multispectral Imagery 

The Landsat Collection 2 Analysis Ready Data (ARD) undergoes a rigorous and consistent 

processing method, ensuring its suitability for monitoring and evaluating landscape changes 

(Landsat Collection 2 U.S. Analysis Ready Data | U.S. Geological Survey, 2019). The raster data 

(listed in Table 1) with 30-meter resolution were obtained from the US Geological Survey 

(USGS) Earth Explorer, and efforts were made to acquire imagery from the same season to 

minimize seasonal variations (Ireland & Petropoulos, 2015). However, factors such as cloud 

cover and snowpack were also taken into account. The use of ARD greatly reduced 

preprocessing time as data from three different Landsat satellites were utilized. Data from 

Landsat 7 for the year 2012 were not included due to data loss caused by a malfunction of the 

satellite. 

The Landsat data were provided as separate bands. The required bands for this study were the R 

and NIR bands for all years to calculate NDVI, bands 3 and 4 for Landsat 5, and bands 4 and 5 

for Landsat 8 and 9. Additionally, the SWIR band, Landsat 5 band 7, was also needed for the 

year of the fire to calculate NBR and dNBR. To reduce processing time, only the necessary 

bands were extracted from each Landsat dataset. The shapefile of the Cold Fire perimeter was 

opened with geopandas. The extracted bands were then reprojected and clipped to the geometry 
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of the study area using rioxarray, stacked using xarray to create a multiband raster, and exported 

using rioxarray. 

Collection Dates 

Landsat 5 Landsat 8 Landsat 9 

June 6, 2008 June 28, 2013 June 29, 2022 

Sept 9, 2008 June 22, 2014  

June 24, 2009 June 25, 2015  

July 6, 2010 June 20, 2016  

July 16, 2011 June 23, 2017  

 June 26, 2018  

 June 23, 2019  

 July 1, 2020  

 June 18, 2021  

Table 1 - Landsat satellites and data collection dates. 

 

Pre- and post-fire Landsat rasters were opened using rioxarray. NBR (Equation 1) and dNBR 

(Equation 2) were calculated using basic Python math operations.  

𝑁𝐵𝑅 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)
         (1) 

𝑑𝑁𝐵𝑅 =  𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡        (2) 

All the Landsat multiband rasters were opened using rioxarray, and NDVI (Figure 3) was 

calculated for each year using basic Python math operations (Equation 3). All the single band 

NDVI rasters were stacked in chronological order and exported as one multiband raster using 

rasterio.  
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𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝑅)
          (3) 

Digital Elevation Model Products 

Shuttle Radar Topography Mission data were also obtained from the USGS Earth Explorer to use 

as the DEM. The DEM was void-filled with a 1 arc-second resolution (USGS EROS Archive - 

Digital Elevation - Shuttle Radar Topography Mission (SRTM) Void Filled | U.S. Geological 

Survey, 2018). Because the Landsat and DEM data had different pixel sizes, the DEM was 

reprojected and co-registered to match the Landsat rasters. The shapefile of the Cold Fire 

perimeter with a 300-meter buffer was opened using geopandas. One Landsat raster was clipped 

using rasterio to use for the co-registration. Since edge pixels are not included when calculating 

aspect and slope, 300 meters was a more than sufficient buffer to ensure all pixels within the 

study area boundary would be calculated. The DEM was opened and reprojected using bilinear 

interpolation with rioxarray. Co-registration was performed using rasterio, and the DEM was 

clipped to the extent of the Landsat raster and not the geometry during the co-registration 

process. 

After co-registration, aspect and slope were calculated using the DEM using GDAL. The intent 

was to use the GDAL Python API function DEMProcessing() for the aspect and slope 

calculations; however, the results were grossly inaccurate. Instead, the GDAL shell command 

was executed using the Python os.system() function. An attempt was made to use RichDEM, 

but the save function, SaveGDAL(), did not work. The aspect raster contained three NoData 

pixels in the middle of the raster. The values for the NoData pixels were interpolated using 

NumPy and scipy.interpolate.griddata. The aspect and slope rasters were clipped to 

the study area using rioxarray. Although the slope raster was clipped using the same method as 
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other rasters, unlike the other clipped rasters, the values outside the clipped area were -9999 

instead of NaN. To perform the linear regression, the values had to be NaN, so a mask was 

applied using xarray.  

 

Figure 3 - NDVI pre- and post-fire. Lower values are red and higher values are green. 
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Classes 

To compare the relationship between vegetation regrowth and topography, as well as vegetation 

regrowth and burn severity using a linear regression, aspect, slope, and dNBR needed to be 

classified with an individual raster for each class. The classifications were all performed by 

opening the appropriate raster using rioxarray, masking all non-class values with xarray, and 

saving the resulting class raster with rioxarray (Figure 5). 

Burn Severity Level dNBR Range 

Enhanced Regrowth, low (post-fire) -0.250 to -0.101 

Unburned -0.100 to +0.99 

Low Severity +1.00 to +0.269 

Moderate-low Severity +0.270 to +0.439 

Moderate-high Severity +0.440 to +0.659 

Table 2 - Burn severity levels based on dNBR. Note, only severity levels applicable to the study area are shown. 

 

Burn severity levels based on dNBR proposed by the USGS (Keeley, 2009) were used to classify 

the study area (Table 2). The dNBR for the study area ranged from approximately -0.144 to 

0.483. Since the Enhanced Regrowth burn severity area was so small, it was combined with 

Unburned (Figure 4). For the same reason, Moderate-high Severity was combined with 

Moderate-low Severity as a Moderate Severity class.  

Aspect was then classified into north-facing slopes, north and northeast aspects, and south-facing 

slopes, south and southwest aspects based on Meng et al. (2015). Slope was classified into three 

classes (Table 3) based on slope classes in the U.S. Department of Agriculture (USDA) Soil 

Survey Manual (Soil Science Division Staff, 2017). 



16 

 

 

Figure 4 - Burn severity classes of the Cold Fire based on dNBR. 

 

Slopes Range 

Mild 0 - 8% 

Moderate 8 - 20% 

Steep > 20% 

Table 3 - Slope classes based on USDA Soil Survey Manual. 

 

Post-fire Vegetation Regrowth Analysis 

Numerous studies have investigated vegetation regrowth after fires using various techniques. The 

following examples are not exhaustive but provide a snapshot of different methods used. For 

instance, Casady et al. (2010) employed regression trees to predict post-fire vegetation based on 
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burn severity, soil, and vegetation. Meng et al. (2015) used ordinary least squares regression to 

model post-fire vegetation recovery, taking into account precipitation, temperature, fire severity, 

and topographic factors. Viana-Soto et al. (2017) utilized both ordinary least squares and 

geographic weight regression to compare results. Tonbul et al. (2016) conducted a multitemporal 

analysis of NDVI and SAVI, computing statistics for each index at different stages after the fire. 

Bright et al. (2019) employed random forest modeling to examine the relationship between post-

fire NBR recovery, climate, and topography. Finally, Petropoulos et al. (2014) compared post- 

and pre-fire NDVI rates of vegetation regrowth using linear regression. Similarly, the present 

study used linear regression to compare pre- and post-fire NDVI. 

To compare the relationship between vegetation regrowth and topography and burn severity 

using a linear regression, the NDVI raster stack was clipped with each class raster using rasterio 

and NumPy. This resulted in eight different clipped NDVI raster stacks, three for burn severity, 

three for slope, and two for aspect. After each stack was clipped, the shape of the raster was 

verified to be the same shape as the class raster. 

The multiband NDVI raster was opened using GDAL, read as an array, and converted to a 

numpy.array. The array was flattened, and all NaN values were removed. A linear regression 

was performed for each year post-fire for each class, as well as the entire study area using 

scipy.stats.linregress. The post-fire NDVI was the dependent variable, and the pre-fire 

NDVI was the independent variable. The statistics from the linear regression were stored in a 

pandas.DataFrame and exported as a csv file. The R-squared for each year post-fire was 

plotted using matplotlib to conduct a visual analysis of the vegetation regrowth. 
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Figure 5 - dNBR-derived classes for burn severity level and DEM-derived classes for slope and aspect. 
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3. Results 

A visual comparison of NDVI over the study period shows the vegetation damage caused by the 

fire, and the subsequent regrowth after the fire. Vegetation regrowth appears to mostly increase 

over the years post-fire, except for 2020. All plots of R-squared can be seen in Figure 6. 

In the linear regression analysis, pre-fire NDVI was used as the independent variable and post-

fire NDVI as the dependent variable. Therefore, higher R-squared value indicates that post-fire 

NDVI is closer to pre-fire NDVI. The R-squared values for the entire study area indicates that 

vegetation regrowth was minimal in 2009, the first year after the fire. However, vegetation 

regrowth increased in 2010 and 2011. As no high-quality Landsat ARD data were available for 

2012, it is unclear if vegetation regrowth continued to increase at the previous rate that year or if 

it started to slow down like subsequent years. From 2013 to 2020, vegetation regrowth slowed 

down but remained relatively steady. However, in 2021, vegetation regrowth decreased 

significantly, and it was even lower in 2022. 

The R-squared plots for topography-related factors were similar to that of the entire study area. 

The R-squared plot for Moderate Severity burn level was also similar to that of the entire study 

area. However, the vegetation regrowth for Unburned and Low Severity burn classes was 

notably different. In both classes, vegetation regrowth declined in 2009 and 2010. From 2011 to 

2022, vegetation regrowth for the Low Severity burn class was similar to that of the entire study 

area. For the Unburned burn class, vegetation regrowth was relatively constant until 2019, with 

some minor ups and downs. However, unlike the Low and Moderate Severity burn classes, 

vegetation regrowth in the Unburned area started to decrease in 2019, and from 2020 to 2022, it 

declined even further. 
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Figure 6 - R-squared results from linear regression. 

 

4. Discussion 

Based on the findings of this study, there is considerable spatial diversity in the recovery of 

vegetation after a fire. Moreover, the results indicate that vegetation regrowth following a fire is 

a gradual process, with the vegetation coverage in the burn area not reaching pre-fire levels even 

after 14 years. One plausible explanation for this could be vegetation type conversion, as shown 
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in Figure 7. Nevertheless, to validate this hypothesis, it would be necessary to conduct on-site 

verification. 

 

Figure 7 - According to the NLCD, pre-fire vegetation in 2006 (left) was mostly evergreen forest (dark green) with some 

shrub/scrub (tan). Post-fire vegetation in 2019 (right) consisted mostly of shrub/scrub with some everything forest; however, 

much of the post-fire evergreen forest consists of vegetation that survived the fire. 

 

Although the Cold Fire did not result in any high severity burn areas, regions with lower burn 

severity demonstrated higher regrowth, which is consistent with the findings of other studies 

(Petropoulos et al., 2014; Crotteau et al., 2013). The degree of vegetation loss caused by a fire is 

illustrated by the dNBR, but comparing the burn severity of areas with different pre-fire 

vegetation levels may not yield an accurate depiction. This is because locations with more pre-

fire vegetation may have higher dNBR values, even if they experience a comparable level of 

burn severity as areas with lower pre-fire vegetation (Casady et al., 2010). 

Like other studies (Meng et al., 2015; Bright et al., 2019), vegetation regrowth was higher the 

first few years after the fire starting one-year post-fire. Unlike the studies by Petropoulos et al. 
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(2014) and Fox et al. (2008) which found vegetation regrowth to be higher on north-facing 

slopes, south-facing slopes in the Cold Fire burn scar had a higher regrowth rate after 2011. The 

results also disproved the hypothesis of lower vegetation regrowth on steeper slopes.  

5. Conclusion 

The use of FOSS for GIS for this post-fire vegetation regrowth analysis was effective, albeit 

challenging due to the programming involved. Due to my inexperience with geospatial analysis 

using Python, many days were dedicated to the programming for this analysis. Most of the time 

spent on this study involved researching how to obtain the desired results using the various 

Python libraries and debugging code. The analysis would have taken less than a day using 

proprietary software, like ArcGIS, and not much longer than that using an unfamiliar FOSS, like 

QGIS. 

As for the post-fire vegetation regrowth analysis itself, the unexpected results of increased 

growth on steeper slopes and south-facing slopes warrant investigation in a future study. Slope 

shape could be used instead of slope angle like in the study by Bright et al. (2019). Additionally, 

the relative dNBR which normalizes dNBR for variations in pre-fire vegetation could be used 

instead of dNBR for burn severity classification (Cai & Wang, 2020). To further analyze post-

fire vegetation regrowth, different analysis methods could be used to compare results. The study 

could also be expanded to include many burn scars to analyze the differences in vegetation 

regrowth across different landscapes, and climate factors could be included. 
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Appendix A: Python packages used for data processing and analysis 

pandas 1.5.3 

geopandas 0.12.2 

NumPy 1.24.2 

xarray 2023.3.0 

rioxarray 0.14.0 

earthpy 0.9.4 

rasterio 1.3.6 

matplotlib 3.7.1 

GDAL 3.6.3 

scipy 1.10.1 

shapely 2.0.1 


